Search results for "non-contact atomic force"

showing 10 items of 10 documents

Scanning force microscopy based rapid force curve acquisition on supported lipid bilayers: experiments and simulations using pulsed force mode.

2004

In situ pulsed force mode scanning force microscopy (PFM-SFM) images of phase separated solid-supported lipid bilayers are discussed with the help of computer simulations. Simultaneous imaging of material properties and topography in a liquid environment by means of PFM-SFM is severely hampered by hydrodynamic damping of the cantilever. Stiffness and adhesion images of solid-supported membranes consisting of cholesterol, sphingomyelin, and 1,2-dioleyl-phosphatidylcholine obtained in aqueous solution exhibit contrast inversion of adhesion and stiff. ness images depending on parameters such as driving frequency, amplitude, and trigger setting. Simulations using a simple harmonic oscillator mo…

Cantileverbusiness.industryChemistryLipid BilayersPhase (waves)StiffnessSimple harmonic motionMicroscopy Atomic ForceAtomic and Molecular Physics and OpticsSphingomyelinsScanning probe microscopyOpticsCholesterolmedicinePhosphatidylcholinesComputer SimulationPhysical and Theoretical Chemistrymedicine.symptombusinessMaterial propertiesLipid bilayerNon-contact atomic force microscopyChemphyschem : a European journal of chemical physics and physical chemistry
researchProduct

Towards the origin of the shear force in near-field microscopy

2001

The shear force from a gold or a graphite sample acting on an approaching near-field optical probe is studied in detail. The adiabatic and dissipative contributions to the force are clearly distinguished by monitoring the amplitude as well as the phase of the tip vibration when the tip approaches the surfaces. We also take into account that not only the damping and the resonance frequency but also the mass of the system changes when the tip approaches the surface. The relative strength of the contributions to the force varies differently but characteristically with the distance of the two samples, starting at a much larger distance in the case of graphite. The adiabatic contribution is lar…

Condensed matter physicsbusiness.industryChemistryElectrostatic force microscopeShear forceGeneral EngineeringGeneral Physics and AstronomyAtomic force acoustic microscopyConductive atomic force microscopyOpticsAmplitudeNear-field scanning optical microscopeAdiabatic processbusinessNon-contact atomic force microscopy
researchProduct

Scanning probe microscopies applied to the study of the domain wall in a ferroelectric crystal.

2007

Summary Scanning near-field optical microscopy is capable of measuring the topography and optical signals at the same time. This fact makes this technique a valuable tool in the study of materials at nanometric scale and, in particular, of ferroelectric materials, as it permits the study of their domains structure without the need of chemical etching and, therefore, not damaging the surface (as will be demonstrated later). We have measured the scanning near-field optical microscopy transmission, as well as the topography, of an RbTiOPO4 single crystalline slab, which exhibits two different of macroscopic ferroelectric domains. A chemical selective etching has been performed to distinguish b…

HistologyMaterials sciencebusiness.industryScanning confocal electron microscopyScanning capacitance microscopyIsotropic etchingPathology and Forensic MedicinePiezoresponse force microscopyOpticsScanning ion-conductance microscopyNear-field scanning optical microscopebusinessNon-contact atomic force microscopyVibrational analysis with scanning probe microscopyJournal of microscopy
researchProduct

Single-molecule switching with non-contact atomic force microscopy

2011

We report upon controlled switching of a single 3,4,9,10-perylene tetracarboxylic diimide derivative molecule on a rutile TiO(2)(110) surface using a non-contact atomic force microscope at room temperature. After submonolayer deposition, the molecules adsorb tilted on the bridging oxygen row. Individual molecules can be manipulated by the atomic force microscope tip in a well-controlled manner. The molecules are switched from one side of the row to the other using a simple approach, taking benefit of the sample tilt and the topography of the titania substrate. From density functional theory investigations we obtain the adsorption energies of different positions of the molecule. These adsorp…

Kelvin probe force microscopeMaterials scienceMechanical EngineeringElectrostatic force microscopeBioengineeringGeneral ChemistryConductive atomic force microscopyLocal oxidation nanolithography530Molecular physicsCrystallographyMechanics of MaterialsMoleculeGeneral Materials ScienceElectrical and Electronic EngineeringMagnetic force microscopeNon-contact atomic force microscopyPhotoconductive atomic force microscopyNanotechnology
researchProduct

Achieving high effectiveQ-factors in ultra-high vacuum dynamic force microscopy

2010

The effective Q-factor of the cantilever is one of the most important figures-of-merit for a non-contact atomic force microscope (NC-AFM) operated in ultra-high vacuum (UHV). We provide a comprehensive discussion of all effects influencing the Q-factor and compare measured Q-factors to results from simulations based on the dimensions of the cantilevers. We introduce a methodology to investigate in detail how the effective Q-factor depends on the fixation technique of the cantilever. Fixation loss is identified as a most important contribution in addition to the hitherto discussed effects and we describe a strategy for avoiding fixation loss and obtaining high effective Q-factors in the forc…

Materials scienceCantileverMicroscopebusiness.industryApplied MathematicsUltra-high vacuumQ-factorNanotechnology530NC-AFMlaw.inventionforce microscopyFixation (surgical)lawQ factormounting lossMicroscopyForce dynamicsOptoelectronicscantileverbusinessInstrumentationEngineering (miscellaneous)Non-contact atomic force microscopyMeasurement Science and Technology
researchProduct

Environmental chamber for an atomic force microscope.

2007

A commercial atomic force microscope (AFM), originally designed for operation in ambient conditions, was placed inside a compact aluminum chamber, which can be pumped down to high vacuum levels or filled with a desired gaseous atmosphere, including humidity, up to normal pressure. The design of this environmental AFM is such that minimal intrusion is made to the original setup, which can be restored easily. The performance inside the environmental chamber is similar to the original version.

Materials sciencebusiness.industryAtomic force microscopyEnvironmental chamberUltra-high vacuumchemistry.chemical_elementHumidityHumidityConductive atomic force microscopyMicroscopy Atomic Forcelaw.inventionOpticsPressure measurementchemistryAluminiumlawPressureGasesComposite materialbusinessInstrumentationNon-contact atomic force microscopyComputer Science::DatabasesAluminumThe Review of scientific instruments
researchProduct

Tuning molecular self-assembly on bulk insulator surfaces by anchoring of the organic building blocks.

2013

Molecular self-assembly constitutes a versatile strategy for creating functional structures on surfaces. Tuning the subtle balance between intermolecular and molecule-surface interactions allows structure formation to be tailored at the single-molecule level. While metal surfaces usually exhibit interaction strengths in an energy range that favors molecular self-assembly, dielectric surfaces having low surface energies often lack sufficient interactions with adsorbed molecules. As a consequence, application-relevant, bulk insulating materials pose significant challenges when considering them as supporting substrates for molecular self-assembly. Here, the current status of molecular self-ass…

Models MolecularMaterials scienceAnchoringNanotechnologyInsulator (electricity)Dielectricmolecular adsorption530Molecular self-assemblyMoleculeGeneral Materials ScienceComputer Simulationnon-contact atomic forceOrganic Chemicalsinsulating surfacesMechanical EngineeringIntermolecular forceElectric Conductivityself-assemblymolecule-surface interactionsModels ChemicalMechanics of MaterialsMetalsmicroscopySelf-assemblyNon-contact atomic force microscopyAdvanced materials (Deerfield Beach, Fla.)
researchProduct

Lateral force microscopy of multiwalled carbon nanotubes

2009

Carbon nanotubes are usually imaged with the atomic force microscope (AFM) in non-contact mode. However, in many applications, such as mechanical manipulation or elasticity measurements, contact mode is used. The forces affecting the nanotube are then considerable and not fully understood. In this work lateral forces were measured during contact mode imaging with an AFM across a carbon nanotube. We found that, qualitatively, both magnitude and sign of the lateral forces to the AFM tip were independent of scan direction and can be concluded to arise from the tip slipping on the round edges of the nanotube. The dependence on the normal force applied to the tip and on the ratio between nanotub…

NanotubeMaterials scienceElectrostatic force microscopeAnalytical chemistryAtomic force acoustic microscopyMechanical properties of carbon nanotubesConductive atomic force microscopyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsChemical force microscopyMagnetic force microscopeComposite materialInstrumentationNon-contact atomic force microscopyUltramicroscopy
researchProduct

Application of Tuning Fork Sensors for In-situ Studies of Dynamic Force Interactions Inside Scanning and Transmission Electron Microscopes

2012

Mechanical properties of nanoscale contacts have been probed in-situ by specially developed force sensor based on a quartz tuning fork resonator (TF). Additional control is provided by observation of process in scanning electron microscope (SEM) and transmission electron microscope (TEM). A piezoelectric manipulator allows precise positioning of atomic force microscope (AFM) probe in contact with another electrode and recording of the TF oscillation amplitude and phase while simultaneously visualizing the contact area in electron microscope. Electrostatic control of interaction between the electrodes is demonstrated during observation of the experiment in SEM. In the TEM system the TF senso…

lcsh:TN1-997Scanning Hall probe microscopeMaterials scienceScanning electron microscopebusiness.industryfrictiontuning forknanomechanicslaw.inventionNEMSOpticslawMicroscopymicroscopyGeneral Materials ScienceScanning tunneling microscopeElectron microscopeTuning forkbusinessContact areaNon-contact atomic force microscopylcsh:Mining engineering. MetallurgyMaterials Science
researchProduct

Modification of a commercial atomic force microscopy for low-noise, high-resolution frequency-modulation imaging in liquid environment.

2011

A key issue for high-resolution frequency-modulation atomic force microscopy imaging in liquids is minimizing the frequency noise, which requires a detailed analysis of the corresponding noise contributions. In this paper, we present a detailed description for modifying a commercial atomic force microscope (Bruker MultiMode V with Nanoscope V controller), aiming at atomic-resolution frequency-modulation imaging in ambient and in liquid environment. Care was taken to maintain the AFMs original stability and ease of operation. The new system builds upon an optimized light source, a new photodiode and an entirely new amplifier. Moreover, we introduce a home-built liquid cell and sample holder …

noiseMaterials scienceoptical sensorsAtomic force acoustic microscopy530Noise (electronics)law.inventionOpticsphotodiodeslawInstrumentationAtomic de Broglie microscopeatomic force microscopycalcium compoundsbusiness.industrysample holdersAmplifierNoise spectral densityPhotodiodefrequency modulationmodulationfrequencyamplifiersbusinessNon-contact atomic force microscopyFrequency modulationimage resolutionThe Review of scientific instruments
researchProduct